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The approach to a wall of a non-Brownian rigid spherical particle, settling in a viscous
fluid with a Reynolds number of the order of unity, is studied experimentally. Far
from the wall, the fluid motion around the particle is driven by inertia and viscosity
forces. The particle Stokes number is also of the order of unity, so that the particle
motion far from the wall is driven by inertia. In the close vicinity of the wall, however,
the particle–wall hydrodynamic interaction decelerates the particle significantly. An
interferometric device is used to measure the vertical displacement of a millimetric
size spherical bead at distances from the wall smaller than 0.1 sphere radius, with a
spatial resolution of 100 nm. For the range of impact Stokes number (St�, based on
the limit velocity of the sphere in an unbounded fluid) explored here (up to St� ∼= 5),
the measurements reveal that a small region of negligible particle inertia still exists
just prior to contact of the sphere with the wall. In this lubrication-like region, the
particle velocity decreases linearly with decreasing particle–wall distance and vanishes
at contact, ruling out the possibility of a rebound. The vertical extent of this region
decreases with increasing Stokes number and is e.g. only 10 µm large at impact Stokes
number St� ∼= 5.
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1. Introduction
In a first step towards a comprehensive treatment of suspensions of particles

interacting with walls (e.g. of a container), it is useful to consider elementary situations
such as a single spherical particle approaching a wall. This paper is limited to the
case when the particle and fluid density are of the same order of magnitude, e.g. for
solid particles in a liquid. When the Reynolds number of the flow around a particle
is low compared with unity, creeping flow equations apply and a single sphere in
unbounded fluid settles at the Stokes velocity

VSt =
2

9

(ρp − ρf )ga2

µ
, (1.1)
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where a is the sphere radius, ρp is the density of the particle, ρf is the fluid density
and µ is the fluid viscosity. Here, the associated low Reynolds number is defined
as Re = (2a)ρf VSt/µ. Consider now a particle near a wall, let h be the gap between
the particle and wall and let ε = h/a be the normalized gap. For a spherical particle
approaching a wall with a velocity Vp(ε), for instance when settling under gravity,
the drag force FD may be written as FD =6πµ aVp(ε) fzz (ε), where the dimensionless
friction factor fzz (ε) is a function of the normalized gap ε. This friction factor
was calculated theoretically as a series (see Brenner 1961; Maude 1961) using the
technique of bi-spherical coordinates. This exact solution was verified experimentally
(see Ambari, Gauthier-Manuel & Guyon 1984; Lecoq et al. 1993). In the lubrication
region, i.e. when the particle–wall distance is smaller than roughly 0.01 sphere radius,
the exact solution by Maude (1961) and Brenner (1961) coincides within a 1 % error
with the standard approximate lubrication theory (see e.g. Cox & Brenner 1967):
fzz (ε) = 1/ε. It also coincides within 1 % error for ε < 0.25 with the three terms
asymptotic expansion for small gap ε of Cox & Brenner (1967)

fzz (ε) =
1

ε
+

1

5
ln

[
1

ε

]
+ 0.9713. (1.2)

Note that the second (ln) term in the asymptotic expansion, if taken alone, does
not improve over the first term, since it is practically of the same order as the
third term (unless ε is very small, which is not practically useful here). Since fluid
inertia is negligible and fluid and particle density are of the same order, particle
inertia is also negligible and the balance of forces on the moving sphere gives
Vp(ε) fzz (ε) = VSt during the whole motion of the sphere. Hence, keeping only the
first term in (1.2), in the lubrication region (ε � 1) and for negligible fluid inertia
(Re � 1), Vp(ε) = VSt ε: the particle velocity decreases linearly in ε as the particle
approaches the wall, the slope of the velocity versus dimensionless gap curve being
the Stokes velocity. A lubrication drag force that is inversely proportional to the
separation distance thus leads to the well-known paradox that the sphere would only
asymptotically make contact with the wall. However, in practice, this theory breaks
down for various reasons, among them the roughness of the real surfaces allowing
contact in a finite time (see Smart & Leighton 1989; Lecoq et al. 2004). Yet, resolving
the question of a possible collision of a particle on a smooth wall remains a challenge.
It is clear that fluid inertia may participate in this question.

Small effects of fluid inertia in the lubrication region were calculated by
Cox & Brenner (1967) using the method of matched asymptotic expansions, with
the following result:

fzz(ε, Re) =
1

ε
+

1

5

[
1 +

Re

4

]
ln

[
1

ε

]
+ O(Re2), (1.3)

valid for ε � 1 and εRe � 1. Note that here the sphere is moving towards the wall
with a constant velocity. In this problem, the fluid flow is geometrically unsteady; this
has been taken into account in this formula. Unfortunately, for Re → 0, formula (1.3)
does not provide a good approximation to fzz(ε) without the next-order (constant)
term appearing in (1.2), unless ε is very small, as explained after (1.2). It is not
known at this stage whether the constant term 0.9713 could simply be added in (1.3)
since the O(Re2) term has not been calculated. Nevertheless, formula (1.3) is useful
in providing the following estimate. For small values of Re and ε, the second-order
correction (ln) term appears to be quite small compared to the leading order one,
which is the standard lubrication friction coefficient. As a consequence, according to
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this formula, the effects on the drag force of a small fluid inertia would be rather
difficult to detect experimentally. In order to resolve experimentally the influence of
fluid inertia, we thus consider cases where the Reynolds number is of order unity.

At Re ∼=1, a variety of situations may occur depending on whether the inertia of
the particle approaching the wall is sufficient, or not, to make it collide with the
wall. Particle inertia is usually quantified by a Stokes number, defined as the ratio
of particle inertia to viscous forces. The problem of a sphere approaching a wall is
unsteady, so that the velocity and Reynolds number based on this velocity depend
on the distance to the wall. Taking VSt as a characteristic velocity for the particle,
we thus define a particle Stokes number St = mpVSt/6πµa2 = ((ρp/ρf )/9)Re, where
mp is the mass of the particle. With fluid and particle densities having the same
order of magnitude, the particle Stokes number is of the same order as the Reynolds
number based on the Stokes velocity. Earlier studies have dealt with the collision
of the particle with the wall in this configuration, focusing attention on the critical
value of Stokes number above which the particle is able to rebound off the wall
(Davis, Seyrassol & Hinch 1986; Barnocky & Davis 1988). In the study by Gondret
et al. (1999), the whole trajectory of a sphere fully immersed in a fluid is recorded
during its approach of the wall, and the transition from the non-bouncing to the
bouncing regime is found at a critical Stokes number St� ∼= 20. Note that here, St� is
an impact Stokes number, based on the impact velocity (limiting velocity far from
the wall). Later studies (Joseph et al. 2001; Gondret, Lance & Petit 2002) showed
that this transition is more precisely situated at St� ∼=10. Further studies are needed
for detailing how near-wall hydrodynamic interactions may slow down the particle to
such an extent as to hinder collision.

To summarize, this study is concerned with a spherical non-Brownian particle
settling by gravity towards a horizontal plane wall, in the case where the fluid has
a finite inertia far from the wall (Re ∼=1), and the fluid and particle densities are of
the same order of magnitude. Hence, the particle enters the near-wall region (ε < 0.1)
with a non-negligible inertia. The focus of this experimental study is the particle
dynamics in this region (ε < 0.1). Values of particle Stokes numbers, based on the
Stokes velocity, are in the range 0.6 � St � 9.2, and are, therefore, limited to the
non-bouncing regime. The experimental set-up and results are presented in § 2. In § 3,
a simple semi-empirical model is presented and compared to experimental results.
Finally, the conclusion is in § 4.

2. Experiments
The displacement of a sphere of millimetric size is measured with an interferometric

device, with a resolution on the displacement of 100 nm. This technique provides
minute accuracy for the sphere displacement in this near wall region. The device,
which is used here, was already described by Lecoq et al. (1993). The settling sphere is
used as a reflector in the interferometer, and its displacement makes the interference
fringe pattern (circular rings) move accordingly. The recorded signal is the light
intensity at the centre of the interference pattern. As a consequence, a signal variation
from a maximum (bright fringe) to another maximum (bright fringe) is due to a
displacement of the sphere equal to λ/4n, where λ is the wavelength of the laser, and
n is the index of refraction of the suspending fluid. Here, with an He–Ne laser beam
(λ= 632.8 nm) and a silicon oil (n= 1.404), we have λ/4n= 112 nm. The velocity vp

of the sphere is related to the velocity of fringe displacement by vp = (λ/4n)/�tm ,
where �tm is the elapsed time between two maxima of the signal. Thus, the spatial
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resolution of the device depends on the frequency of the data acquisition system.
If this acquisition system is able to detect the extrema of the signal, it provides an
accuracy on the displacement of the sphere of the order of 0.06 µm, which is better
than most standard visualization techniques, and also quite small compared with the
particle size, the ratio being at most �ε = 10−5 corresponding to the smallest sphere
that we use (2a = 5.55 mm).

Originally (see Lecoq et al. 1993), this interferometric device was designed to follow
the motion of a sphere at Re ∼= 10−5. Here, an improved data acquisition system has
been developed for following faster motions of the sphere up to around 100 mms−1.
At this velocity, the signal frequency is 1/�tm ∼=0.9 MHz. The data acquisition then
should have a frequency at least 10 times larger, i.e. 10 MHz. The opto-electronic
conversion is made via a photo-multiplier tube (R1894 from Hamamatsu) whose
response time of 0.8 ns is much smaller than the data acquisition period. Its quantum
efficiency at λ= 632.8 nm is sufficiently large. At the output of the photo-multiplier
tube the electric-signal intensity is low, so that it is necessary to adapt the impedance
and amplify the signal. This is done via a tailored operational amplifier device with
bandwidth 4.2 Hz –1.2 MHz, that ensures the amplification in a frequency range of
two orders of magnitude larger than the one in the earlier set-up. The signal is
recorded with a high-frequency electronic oscilloscope (DPO4032 from Tektronics)
whose maximal memory length is fixed to 1M points. The recorded signal is transferred
to a PC and processed by a Matlab code for extracting the extreme values of the
signal as a function of time. The key point of the algorithm is a detection of the
extrema that is not affected by the noise. It applies a ‘backwards following up’ (step
by step) method, starting from the arrival of the sphere at the plane wall. In practice,
the robustness of this procedure has been proven in a range where the ratio of a given
frequency to the next one is smaller than 1.5. For the highest frequency, for which
they were only around 10 points per period, the noise increased and the frequency
was averaged over 7–8 periods (75 points).

The sphere is embedded in a fluid contained in a cylindrical vessel with a 80 mm
diameter and a 40 mm height. The lateral walls are made with altuglass, and the top
and bottom plane walls are made of glass of optical quality. The vessel is filled up
with a PDMS (polydimethylsiloxane or silicone) oil (either 47V1000 or 47V12500
Rhodorsyl oil, manufactured by Rhone–Poulenc), with density of ρf =978 kg m−3

and kinematic viscosities 12.5 × 10−3 and 10−3 m2 s−1, respectively at 25 ◦C. The air-
conditioned room temperature was 23 ◦C. Physical properties of the oil (viscosity,
refraction index) vary slowly with temperature. The oils have a Newtonian behaviour
for shear rates up to 2000 and 200 s−1, respectively. The particles are spherical steel
balls with density ρp =7.8 × 103 kg m−3 and with diameters ranging from 5.55 to
14 mm. At the beginning of the experiment, the sphere is held at the centre of the top
plane window with a magnet. It is then released by rapidly taking away the magnet.
This creates small initial perturbations that may cause the trajectory of the sphere
not to be aligned with the vertical laser beam. The subsequent motion of the sphere
lasts only a few tenths of a second, so that it is not possible to manually readjust
the position of the laser beam during this motion. Therefore, experiments have to
be repeated several times until a vertical trajectory is obtained in the vicinity of the
wall. The contact position with the bottom wall is defined from the recorded signal,
when the period of the signal becomes very large indicating a vanishing velocity (see
figure 1a). Then, the error on contact position is around λ/4n= 112 nm. This contact
fixes the zero value for the vertical axis and the preceding positions of the sphere are
reconstructed from it using the calculated velocity for each signal period.
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Calculated values Measured values Critical distance
Diameter

2a VSt V m
St hc

(mm) (m s−1) Re St (m s−1) �V m
St /V m

St V m
St /VSt Stm (mm) εc εcStm

5.55 0.12 0.65 0.58 0.12 0.002 1.04 0.63 0.150 0.0541 0.034
6.35 0.15 0.97 0.85 0.16 0.001 1.07 0.99 0.125 0.0394 0.039
8.00 0.24 1.95 1.72 0.28 0.001 1.14 2.25 0.080 0.0200 0.045

10.5 0.42 4.40 3.90 0.51 0.003 1.20 5.66 0.040 0.0076 0.043
12.7 0.61 7.79 6.90 0.77 0.035 1.26 10.91 0.0172 0.0020 0.034
14.0 0.75 10.43 9.24 0.98 0.035 1.31 15.96 0.0094 0.0013 0.021

Table 1. Data for spheres (steel balls) of different diameters settling in 47V1000 silicon oil.
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Figure 1. Experiments at small Reynolds number (sphere of 12.7 mm diameter settling in
47V12500 silicone oil towards a glass wall). (a) Example of raw signal recorded as a function
of time (the sphere approaches close to the wall from right to left and eventually stops).
(b) Normalized velocity versus normalized gap in the lubrication region (scattered line:
experiments, straight line: linear regression).

Typical results obtained in the conditions of a small Reynolds number are shown
in figure 1 (sphere of 12.7 mm diameter in V12500 silicone oil, Re = 2.3 × 10−2). Here
a data acquisition frequency of 2.5 MHz was used. Figure 1(a) depicts the signal
evolution for a sphere arriving at the plane wall, showing the increasing period of
the signal until contact occurs. Note that the signal-to-noise ratio deteriorates at
vanishing frequency, because the low frequency limit of the oscilloscope is reached.
Figure 1(b) is a zoom on the lubrication region, showing the linear variation of the
measured dimensionless velocity, Vp/V m

St , with dimensionless distance ε, where the
measured characteristic velocity, V m

St , is determined from a linear regression. Here,
no filter has been applied on the measured frequency in the lubrication region. We
find V m

St = 49.35 mm s−1, in perfect agreement with the expected value from Stokes
formula (1.1). The maximum velocity in the cell corresponds to a signal frequency of
∼= 0.3 MHz that would not have been detected by the original device.

Measurements of the particle velocity in the lubrication region at Re ∼= 1 and St ∼=1
were performed using the 47V1000 silicone oil, and steel balls of different diameters
ranging from 5.55 to 14 mm. Values of the characteristic velocity VSt , calculated from
Stokes formula, and the Reynolds and Stokes numbers based on this velocity, are
shown in table 1. The range of Reynolds numbers is between 0.65 and 10.4. As the
sphere diameter increases, the settling velocity increases as well and the range of
experimentally accessible particle–wall gaps reduces, as a consequence of the velocity
being closer to the upper cutoff of 100 mm s−1. Then we focus on a region smaller
than 0.35 mm close to the wall where the velocity stays small enough. The results for
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Figure 2. Experiments at finite Reynolds number (steel balls of different diameters falling in
47V1000 silicone oil towards a glass wall): velocities of settling spheres with diameter 8, 10.5,
12.7 and 14 mm, as a function of the sphere-to-wall distance. The diameter of the spheres
increases from right to left. Insert: zoom on the close vicinity of the wall.

the measured particle velocity as a function of the particle–wall distance are shown
in figure 2. For particles with the largest diameters, the measurements exhibit a clear
transition between a nonlinear evolution of the velocity far from the wall and a linear
one close to it. As the Reynolds number increases, the spatial extent of the linear
region is reduced, as shown by the zoom in that region (see insert of figure 2). From
each experimental curve, we have extracted the distance to the wall, hc , at which
the linear regime ends, i.e. at which the velocity is greater than the one expected by
extrapolating the linear variation. (Note that the change from one regime to the other
is better defined as the Reynolds number increases.) The values of hc are reported
in table 1, together with their dimensionless form εc = hc/a. We stress that for the
largest sphere used in these experiments, there still exists a linear region for the
velocity–distance curve just prior to contact, within a distance of hc

∼= 10 µm from the
wall. This region could be hardly studied with a video device. Our measurements thus
complement those by Gondret et al. (1999) who used visualization with a high-speed
video camera, whose precision on the particle position (4 % of particle radius) was not
sufficient in the lubrication region. For a direct comparison with their experiments,
we need an impact Stokes number, St�, based on the limit velocity of a sphere
in an unbounded fluid at Re= O(1). This limit velocity may be estimated in our
experiments, neglecting the effects of sidewalls, by solving the steady motion of the
sphere, and using Oseen’s formula for the friction factor (fzz = 1 + 3Re/16; Happel
& Brenner 1983). For our largest sphere, we find that the impact Stokes number is
St� ∼= 5. This is lower by a factor of about 2 than the critical impact Stokes number
for bouncing transition (Gondret et al. 2002).

3. Discussion
The results for the slope of the linear part of the velocity–distance curve, V m

St , are
displayed in table 1 together with the relative precision (�V m

St )/V m
St (their repeatability

corresponds to a range of four measurements). Note that, as the Reynolds number
increases, the linear regression is calculated on a smaller region, with more scattered
data, so that the precision deteriorates. This characteristic velocity V m

St is found to be
systematically larger than the Stokes velocity, VSt , that would be expected from (1.1),
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with a relative difference that increases with Re, being only 4.2 % at Re =0.65, but
reaching 31.4 % at Re =10.4. Several factors may be invoked to interpret measured
values of V m

St that are larger than expected. Non-Newtonian effects are negligible.
Temperature effects or pre-shear effects due to repeated tests on the same oil within
a few minutes are ruled out. Then, the main effect to be added is due to inertia, as
expected for a Reynolds number Re of order unity. Our experiments show a decrease
in the friction factor fzz(ε, Re) with increasing Re and for a given ε. In contrast
to our results, (1.3) predicts a friction factor that increases with increasing Re, but,
as already mentioned, it is applicable to a sphere moving with a constant velocity
towards the wall, which is not the case in our experiments.

We now propose a semi-empirical model for the near-wall region (ε � 1), assuming
that the whole effect of fluid inertia is included in the friction factor fzz(ε, Re). Note
that the notion of added mass is irrelevant for Reynolds numbers Re = O(1), except
for times which are small compared with the time of diffusion of vorticity, which is
not the case here. Unsteady inertial terms involving viscosity effects might be more
complicated. In this simple model, we ignore any unsteady term that might be due
to fluid inertia in this regime Re= O(1). Then the equation of motion is, with Vp > 0
pointing down:

mp

dVp

dt
= −6πaµVp fzz(ε, Re) +

4

3
πa3(ρp − ρ)g. (3.1)

In the region very close to the wall, experiments show that the velocity grows linearly
with the normalized gap ε, in the form

Vp = V m
St ε, (3.2)

where V m
St is some characteristic velocity. By comparison with (3.1), keeping only the

terms on the right-hand side (i.e. neglecting particle inertia), it follows that we take
in this region:

fzz(ε, Re) =
1

ε

VSt

V m
St

, (3.3)

where VSt is the Stokes velocity. In the particular case Re � 1, then fzz(ε, Re) = 1/ε

from the classical lubrication theory and VSt = V m
St . The fact that a lubrication region

exists for very small gaps, even with some fluid inertia, could be expected from (1.3)
for small Re. However, (1.3) apparently does not apply to unsteady sphere velocity
and Re of order unity, since the experimental friction factor is different from 1/ε.

From (3.2), it appears appropriate to use V m
St as a velocity scale. We then define a

dimensionless time τ = t V m
St /a. Then, Vp/V m

St = −dε/dτ . We further assume that the
friction factor (3.3) can be used in the whole near-wall region (ε � 1). Equation (3.1)
is then rewritten in dimensionless form as

−Stm
d2ε

dτ 2
=

1

ε

dε

dτ
+ 1, (3.4)

where Stm is a modified Stokes number, based on V m
St :

Stm =
ρp

[
V m

St

]2

(ρp − ρf )ga
. (3.5)

Values of the Stokes number, which is representative of particle inertia in the
Re = O(1) regime, are listed in table 1.

Now, for ε � 1, but outside of the linear region close to the wall, the inertia
term on the left-hand side in (3.1) is large compared with the gravity (weight and
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Figure 3. Velocity of the sphere as a function of sphere-to-wall distance. Solid line: experiment
for a 14 mm diameter steel ball settling in 47V1000 silicone oil towards a glass wall. Dotted line:
model neglecting gravity forces, (3.6), with Stm = 16.0, V m

St = 980 mm s−1, V0 = 86.11 mms−1 and
h0 = 0.048 mm. Insert: zoom on the close vicinity of the wall.

buoyancy) term in the right-hand side. Keeping then the first two terms and integrating
yields

Vp

V m
St

=
V0

V m
St

+
1

Stm
ln

ε

ε0

, (3.6)

where V0 is a value of Vp measured at a value ε0 of the normalized gap ε. Note
that a similar result was obtained by Davis et al. (1986) in the context of elasto-
hydrodynamic collision.

Equation (3.6) reflects the strong deceleration of the sphere under the action of
the lubrication drag force. As it further approaches the wall, particle inertia keeps
decreasing, until it is sufficiently small so that the dominant terms in (3.1) become in
turn the lubrication drag force and gravity forces, yielding (3.2). From (3.4), inertia is
negligible compared with gravity at a sufficiently small distance εc such that

εc Stm � 1. (3.7)

The crossover between the two velocity regimes is, therefore, controlled by the
modified Stokes number, as it is situated at a critical particle–wall distance εc that
varies like 1/Stm . We have calculated εc Stm for each set of experiment, and found
values that are on average equal to 0.036 (see table 1), in agreement with the order of
magnitude criteria of (3.7). With increasing Stokes number, the extent of the linear
regime reduces, until εc becomes comparable to the gap where contact between
particle and wall occurs, a distance that is of the order of the height of the roughness
of the surfaces coming into contact. It may happen that, following contact, bouncing
then occurs. However, this is beyond the scope of this study (see Gondret et al. 2002).
It may only be remarked that the present simple model would predict a rebound
transition independent of gravity, which is consistent with the fact that Joseph et al.
(2001) and Gondret et al. (2002) find similar results for the bouncing transition,
regardless of gravity.

To our knowledge, the linear regime at particle Stokes numbers of order unity
has not been mentioned elsewhere. In the lack of awareness of the existence of the
linear regime, (3.6) would overestimate the particle–wall distance at which the particle
velocity vanishes. This is illustrated in figure 3, in which the experimental velocity in
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Figure 4. Normalized velocity of the settling sphere (normalized by V m
St ) as a function of

the normalized sphere-to-wall distance. Solid line: experiments for steel balls of diameter
(a) 12.7 mm and (b) 14 mm, falling in 47V1000 silicone oil towards a glass wall. Dotted line:
numerical model, (3.4), with (a) Stm = 10.9 and (b) Stm = 16. Insert: zoom on the close vicinity
of the wall.

the lubrication region is plotted together with (3.6), taking as initial condition V0, a
measured velocity at a distance h0. The experimental curve and the model are close
far from the wall, starting from the specified initial conditions, but diverge at the
transition with the linear regime, leading to a zero velocity at a distance that is rather
too far from the wall.

Finally, we have solved numerically the equation of motion of the particle, (3.4),
using a predictor–corrector scheme particularly suited for a stiff problem. The initial
conditions are experimental ones (−dε/dτ = V0/V m

St at ε = ε0), chosen within the
lubrication region. The program is stopped at a sufficiently long time for the
corresponding calculated value of ε to be close to zero. The results of the simulations
are depicted in figure 4, together with the experimental velocity. The agreement
between the model and the experiments in the linear regime is the consequence of using
V m

St as velocity scale in (3.4). More interestingly, the numerical simulation describes
correctly the transition between the two regimes. For instance, the discrepancy between
the measured and simulated value of hc is only 1 µm as shown in figure 4(a). This
small discrepancy may be attributed to some unsteady-inertial-viscous drag, the form
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of which is presently unknown in the present configuration, to our knowledge. The
results show that the scaling by V m

St may be safely extrapolated to the nonlinear regime
with correct results. Here the key point is that this semi-empirical model captures the
existence of the linear regime in the range of parameters considered here.

4. Conclusion
Measurements of the velocity of a spherical particle approaching a wall with

small but non-negligible inertia (impact Stokes numbers of order unity), focusing on
the near-wall region (dimensionless particle–wall distances < 0.1), have been proven
possible using an interferometric device with high spatial resolution, coupled with
a high-frequency data-acquisition system. The resolution of the device reveals two
distinct regimes for the dynamics of the particle as the particle–wall distance decreases:
first, a nonlinear regime of rapid deceleration, followed by a linear (lubrication-like)
regime just prior to contact. The spatial extent of the linear regime decreases with
increasing impact Stokes number, but is still detectable in the range of parameters
studied here, i.e. to St� ∼=5.
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